
Importing NRD2 Data Feed to GCP

Posted on October 18, 2023

The intention of this document is to show you the basics of how to download the WhoisXML API's

NRD2 data feed provided by WhoisXML API to a GCP Cloud Storage bucket by leveraging a

serverless Cloud Functions. GCP Cloud Functions acts as a serverless compute service that

allows you to write and execute code without provisioning or managing servers. GCP Cloud

Storage is an object storage service for storing and retrieving files. This document will guide you

through the process of configuring both GCP Cloud Functions and a GCP Cloud Storage bucket.

Out of scope:

Scheduling a function for Cloud Functions

ETL pipelining

Importing the Python requests module

Advanced Security

Clean-up, life cycle file management

Prerequisites

Please ensure you have the following setup:

GCP Account

1 Whois API LLC | www.whoisxmlapi.com

https://newly-registered-domains.whoisxmlapi.com/
https://newly-registered-domains.whoisxmlapi.com/
https://www.whoisxmlapi.com/
https://medium.com/@cziegler_99189/using-the-requests-library-in-aws-lambda-with-screenshots-fa36c4630d82
https://www.whoisxmlapi.com/blog
https://www.whoisxmlapi.com/

Basic to Intermediate knowledge of GCP services, specifically GCP Cloud Functions and

Cloud Storage

Some familiarity with Python which will be used in Cloud Functions

Access to the WHOIS NRD2 data feed. In this example, we will be using the NRD2 Ultimate:

Simple files. You will need an API key with access to the data feed. Please contact us for

more information. For more information on the NRD2 specifications, please visit here.

Step 1: Create a GCP Cloud Storage Bucket

The first step is to create a Cloud Storage bucket to write the NRD2 file.

In the GCP Console, navigate to the Cloud Storage service.

Click on “Create”.

Give the bucket a unique name and select the appropriate region and a storage class for

2 Whois API LLC | www.whoisxmlapi.com

https://newly-registered-domains.whoisxmlapi.com/
https://newly-registered-domains.whoisxmlapi.com/blog/importing-nrd2-data-feed-to-gcp?action=show&subject=modal&id=contactUsModal&mc=blog
https://newly-registered-domains.whoisxmlapi.com/specifications/v2/datafeed-files
https://www.whoisxmlapi.com/blog
https://www.whoisxmlapi.com/

your data.

3 Whois API LLC | www.whoisxmlapi.com

https://www.whoisxmlapi.com/blog
https://www.whoisxmlapi.com/

Then, choose how you would like to manage access to objects. By default, it prevents public

access and has a uniform policy at the bucket level.

4 Whois API LLC | www.whoisxmlapi.com

https://www.whoisxmlapi.com/blog
https://www.whoisxmlapi.com/

Finally, choose how to protect object data. You have the option to do object versioning or

use a retention policy.

5 Whois API LLC | www.whoisxmlapi.com

https://www.whoisxmlapi.com/blog
https://www.whoisxmlapi.com/

Step 2: Creating a Function in Cloud Functions

Now the magic begins.

Navigate to the Cloud Functions service in the GCP console.

Click on “Create Function”. Provide your function with a descriptive name. On the

configuration page, specify “Require authentication” in the HTTPS trigger section.

6 Whois API LLC | www.whoisxmlapi.com

https://www.whoisxmlapi.com/blog
https://www.whoisxmlapi.com/

7 Whois API LLC | www.whoisxmlapi.com

https://www.whoisxmlapi.com/blog
https://www.whoisxmlapi.com/

8 Whois API LLC | www.whoisxmlapi.com

https://www.whoisxmlapi.com/blog
https://www.whoisxmlapi.com/

Click on “Next”.

Step 3: Write the function to import the NRD2 .csv file to
Cloud Storage

The example code snippet uses the Python requests module, and you may need to import it.

First, select Python 3.* as your Runtime.

Then, copy over requirements.txt.

9 Whois API LLC | www.whoisxmlapi.com

https://www.whoisxmlapi.com/blog
https://www.whoisxmlapi.com/

blinker==1.6.3

cachetools==5.3.1

certifi==2023.7.22

charset-normalizer==3.3.0

click==8.1.7

cloudevents==1.10.0

deprecation==2.1.0

Flask==2.3.3

functions-framework==3.4.0

google-api-core==2.12.0

google-auth==2.23.3

google-cloud-core==2.3.3

google-cloud-storage==2.12.0

google-crc32c==1.5.0

google-resumable-media==2.6.0

googleapis-common-protos==1.61.0

gunicorn==20.1.0

idna==3.4

itsdangerous==2.1.2

Jinja2==3.1.2

MarkupSafe==2.1.3

packaging==23.2

protobuf==4.24.4

pyasn1==0.5.0

pyasn1-modules==0.3.0

requests==2.31.0

rsa==4.9

urllib3==2.0.6

watchdog==3.0.0

Werkzeug==3.0.0

The below Python code provides the entry point for the lambda_handler function:

Example code:

import os

from datetime import datetime, timedelta

10 Whois API LLC | www.whoisxmlapi.com

https://www.whoisxmlapi.com/blog
https://www.whoisxmlapi.com/

import requests

from requests.auth import HTTPBasicAuth

import functions_framework

from google.cloud import storage

def download_nrd_file(url, bucket_name, blob_name, authUserPass):

 project_id = "wxa-data-migration"

 storage_client = storage.Client(project=project_id)

 bucket = storage_client.bucket(bucket_name)

 blob = bucket.blob(blob_name)

 CHUNK_SIZE = 1024 * 1024

 try:

 # Download the binary file in chunks

 response = requests.get(

 url, stream=True, auth=HTTPBasicAuth(authUserPass, authUserPass)

)

 response.raise_for_status()

 # Create a temporary file to store chunks

 temp_file = "/tmp/temp_file"

 with open(temp_file, "wb") as f:

 for chunk in response.iter_content(chunk_size=CHUNK_SIZE):

 f.write(chunk)

 # Upload the binary file to Cloud Storage from the temporary file

 blob.upload_from_filename(temp_file)

 # Clean up the temporary file

 os.remove(temp_file)

 return True

 except Exception as e:

 print(f"Error: {str(e)}")

 return False

11 Whois API LLC | www.whoisxmlapi.com

https://www.whoisxmlapi.com/blog
https://www.whoisxmlapi.com/

@functions_framework.http

def lambda_handler(request):

 # Calculate yesterday's date in YYYY-MM-DD format

 yesterday = (datetime.now() - timedelta(days=1)).strftime("%Y-%m-%d")

 # Define the URL of the CSV file you want to download

 nrd_url = f"https://newly-registered-domains.whoisxmlapi.com/datafeeds/Newly_Registered_Domains_2.0/ultimate/daily/{yesterday}/nrd.{yesterday}.ultimate_simple.daily.data.csv.gz"

 # Define your API Key here

 apiKey = "<YOUR_API_KEY>"

 # Define the Cloud Storage bucket and object/key where you want to store the file

 bucket_name = "nrd2"

 blob_name = f"nrd2-simple-{yesterday}.csv.gz"

 try:

 # Download the NRD2 file with basic authentication

 success = download_nrd_file(nrd_url, bucket_name, blob_name, apiKey)

 print("Status code returned is ", str(success))

 if success:

 # Upload the NRD file to Cloud Storage

 print(f"Uploading file to ", bucket_name, blob_name)

 return {

 "statusCode": 200,

 "body": "NRD2 file successfully downloaded and stored in GCP",

 }

 else:

 bodyStr = f"Failed to download {nrd_url}"

 return {"statusCode": 500, "body": bodyStr}

 except Exception as e:

 return {"statusCode": 500, "body": str(e)}

Specify “Entry point” to be the entry function of your code. In our case, it’s “lambda_handler”.

Step 4: Testing your new function

12 Whois API LLC | www.whoisxmlapi.com

https://www.whoisxmlapi.com/blog
https://www.whoisxmlapi.com/

The last step is to test the function to ensure it can a) successfully retrieve the NRD2 file, and b)

write it to the Cloud Storage bucket:

Click on “TEST FUNCTION” at the top of the page, and you should see something similar.

GCP will fire up a Cloud Shell and set up the testing environment.

Click on “RUN TEST” in the bottom right corner.

If your function is set up correctly, the function will retrieve the file, and write it to the Cloud

Storage bucket. You can navigate to the Cloud Storage bucket to verify it’s there.

The output of the console should resemble this.

Then, in Cloud Storage, you'll have a new object added to the bucket.

13 Whois API LLC | www.whoisxmlapi.com

https://www.whoisxmlapi.com/blog
https://www.whoisxmlapi.com/

Conclusion

The steps we took in GCP are similar to the AWS setup. After walking you through the process,

the next step is to determine what you want to do with this data, such as import it into BigQuery, or

MySQL database.

14 Whois API LLC | www.whoisxmlapi.com

https://www.whoisxmlapi.com/blog
https://www.whoisxmlapi.com/

